QMugs, quantum mechanical properties of drug-like molecules

  • Gawehn, E., Hiss, J. A. & Schneider, G. Deep learning in drug discovery. Mol. Inform. 35, 3–14 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, J., Marques, M. R., Botti, S. & Marques, M. A. Recent advances and applications of machine learning in solid-state materials science. Npj Comput. Mater. 5, 83 (2019).

    Article 
    ADS 

    Google Scholar
     

  • von Lilienfeld, O. A. Quantum machine learning in chemical compound space. Angew. Chem. Int. Ed. 57, 4164–4169 (2018).

    Article 
    CAS 

    Google Scholar
     

  • von Lilienfeld, O. A., Müller, K.-R. & Tkatchenko, A. Exploring chemical compound space with quantum-based machine learning. Nat. Rev. Chem. 4, 347–358 (2020).

    Article 

    Google Scholar
     

  • Satorras, V. G., Hoogeboom, E. & Welling, M. E(n) equivariant graph neural networks. In International Conference on Machine Learning, 9323–9332 (PMLR, 2021).

  • Schütt, K., Unke, O. & Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. In International Conference on Machine Learning, 9377–9388 (PMLR, 2021).

  • Huang, B. & von Lilienfeld, O. A. Quantum machine learning using atom-in-molecule-based fragments selected on the fly. Nat. Chem. 12, 945–951 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christensen, A. S., Bratholm, L. A. & Faber, F. A. & Anatole von Lilienfeld, O. FCHL revisited: Faster and more accurate quantum machine learning. J. Chem. Phys. 152, 044107 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Heinen, S., von Rudorff, G. F. & von Lilienfeld, O. A. Toward the design of chemical reactions: Machine learning barriers of competing mechanisms in reactant space. J. Chem. Phys. 155, 064105 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Heinen, S., Schwilk, M., von Rudorff, G. F. & von Lilienfeld, O. A. Machine learning the computational cost of quantum chemistry. Mach. Learn.: Sci. Technol. 1, 025002 (2020).


    Google Scholar
     

  • Christensen, A. S., Faber, F. A. & von Lilienfeld, O. A. Operators in quantum machine learning: Response properties in chemical space. J. Chem. Phys. 150, 064105 (2019).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Faber, F. A., Christensen, A. S. & Huang, B. & Von Lilienfeld, O. A. Alchemical and structural distribution based representation for universal quantum machine learning. J. Chem. Phys. 148, 241717 (2018).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Balcells, D. & Skjelstad, B. B. tmQM dataset-quantum geometries and properties of 86k transition metal complexes. J. Chem. Inf. Model. 60, 6135–6146 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Unke, O. et al. SE(3)-equivariant prediction of molecular wavefunctions and electronic densities. Advances in Neural Information Processing Systems 34 (2021).

  • Schütt, K., Gastegger, M., Tkatchenko, A., Müller, K.-R. & Maurer, R. J. Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions. Nat. Commun. 10 (2019).

  • Grisafi, A. et al. Transferable machine-learning model of the electron density. ACS Cent. Sci. 5, 57–64 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fabrizio, A., Grisafi, A., Meyer, B., Ceriotti, M. & Corminboeuf, C. Electron density learning of non-covalent systems. Chem. Sci. 10, 9424–9432 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramakrishnan, R., Dral, P. O. & Rupp, M. & Von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1, a data set of 20 million calculated off-equilibrium conformations for organic molecules. Sci. Data 4, 170193 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakata, M. & Shimazaki, T. PubChemQC project: A large-scale first-principles electronic structure database for data-driven chemistry. J. Chem. Inf. Model. 57, 1300–1308 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8, 3192–3203 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, J. S. et al. The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules. Sci. Data 7, 134 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakata, M., Shimazaki, T., Hashimoto, M. & Maeda, T. PubChemQC PM6: Data sets of 221 million molecules with optimized molecular geometries and electronic properties. J. Chem. Inf. Model. 60, 5891–5899 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glavatskikh, M., Leguy, J., Hunault, G., Cauchy, T. & Da Mota, B. Dataset’s chemical diversity limits the generalizability of machine learning predictions. J. Cheminformatics 11, 1–15 (2019).

    Article 

    Google Scholar
     

  • Qiao, Z., Welborn, M., Anandkumar, A., Manby, F. R. & Miller, T. F. III Orbnet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features. J. Chem. Phys. 153, 124111 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Bannwarth, C. & Shushkov, P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J. Chem. Theory Comput. 13, 1989–2009 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB-An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S. Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations. J. Chem. Theory Comput. 15, 2847–2862 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bannwarth, C. et al. Extended tight-binding quantum chemistry methods. WIREs Comput. Mol. Sci. 11, e1493 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rezac, J., Fanfrlik, J., Salahub, D. & Hobza, P. Semiempirical quantum chemical PM6 method augmented by dispersion and H-bonding correction terms reliably describes various types of noncovalent complexes. J. Chem. Theory Comput. 5, 1749–1760 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Folmsbee, D. & Hutchison, G. Assessing conformer energies using electronic structure and machine learning methods. Int. J. Quantum Chem. 121, e26381 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bolton, E. E., Kim, S. & Bryant, S. H. PubChem3D: Conformer generation. J. Cheminformatics 3, 4 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Axelrod, S. & Gomez-Bombarelli, R. GEOM: Energy-annotated molecular conformations for property prediction and molecular generation. arXiv preprint arXiv:2006.05531 (2020).

  • Mendez, D. et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 47, D930–D940 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, D. G. et al. Psi4 1.4: Open-source software for high-throughput quantum chemistry. J. Chem. Phys. 152, 184108 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyers, J., Carter, M., Mok, N. Y. & Brown, N. On the origins of three-dimensionality in drug-like molecules. Future Med. Chem. 8, 1753–1767 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Sauer, W. H. & Schwarz, M. K. Molecular shape diversity of combinatorial libraries: A prerequisite for broad bioactivity. J. Chem. Inf. Comput. Sci. 43, 987–1003 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moss, G. et al. Basic terminology of stereochemistry (IUPAC recommendations 1996). Pure Appl. Chem. 68, 2193–2222 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Bento, A. P. et al. An open source chemical structure curation pipeline using rdkit. J. Cheminformatics 12, 1–16 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Christensen, A. S. et al. Orbnet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy. J. Chem. Phys. 155, 204103 (2021).

  • Riniker, S. & Landrum, G. A. Better informed distance geometry: Using what we know to improve conformation generation. J. Chem. Inf. Model. 55, 2562–2574 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tosco, P., Stiefl, N. & Landrum, G. Bringing the MMFF force field to the RDKit: Implementation and validation. J. Cheminformatics 6, 37 (2014).

    Article 

    Google Scholar
     

  • Lloyd, S. Least squares quantization in PCM. IEEE Transactions on Information Theory 28, 129–137 (1982).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Isert, C., Atz, K., Jiménez-Luna, J. & Schneider, G. QMugs: Quantum Mechanical Properties of Drug-like Molecules., ETH Zurich, https://doi.org/10.3929/ethz-b-000482129 (2021).

  • Dalby, A. et al. Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. J. Chem. Inform. Comput. Sci. 32, 244–255 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • NIST Standard Reference Database 101. Computational Chemistry Comparison and Benchmark DataBase, Release 21. https://cccbdb.nist.gov/expbondlengths1.asp August 2020.

  • Bach, R. D. Ring strain energy in the cyclooctyl system. the effect of strain energy on [3 + 2] cycloaddition reactions with azides. J. Am. Chem. Soc. 131, 5233–5243 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goulet-Hanssens, A. et al. Electrocatalytic Z/E isomerization of azobenzenes. J. Am. Chem. Soc. 139, 335–341 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roca-Lopez, D., Tejero, T. & Merino, P. DFT investigation of the mechanism of E/Z isomerization of nitrones. J. Org. Chem 79, 8358–8365 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berthold, M. R. et al. KNIME: The Konstanz Information Miner. In Studies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007) (Springer, 2007).

  • Schrödinger, L. L. C. The PyMOL Molecular Graphics System, Version 2.3.5.

  • Nakata, M., Maeda, T., Shimazaki, T., Hashimoto, M. The PubChemQC Project. http://pubchemqc.riken.jp/ Accessed Sept. 2020.

  • Next Post

    10 Emails You Should Be Sending

    Whether you are just starting with email marketing or you’re already sending marketing emails every week, you know that emails are one of the best channels to sell — and smart marketers are always looking for new ways they can build relationships and grow revenue. You might be asking yourself: […]